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Iterated maps, which mimic the motion of nonlinear systems coupled to a bath, are described in the weak
coupling regime. Classical time-dependent perturbation theory is used to derive the maps. To study vibrational
energy transfer, the system is modeled by the harmonic and Morse oscillators. For chemical reactions the
system is described by the double-well potential. Particular attention is given to the coupling between the
systems and the bath, which is taken to be nonlinear in the bath modes. The maps provide a very efficient
way to numerically simulate the dynamics of the systems, but are unique in their ability to delineate the
various coupling parameters that govern the dynamics. A simple “random phase” limit of the maps is discussed
and leads to a kinetic description of the dynamics given by a multidimensional Fokker-Planck equation.
Explicit expressions for the energy-diffusion coefficients are obtained.

I. Introduction

The pioneering work of Kramers1 treats the process of
crossing a barrier as one that is governed by Brownian dynamics,
in which the surrounding molecules play a major role. It is a
well-recognized fact that the process of crossing a barrier in
condensed phases is a rare event which requires special
theoretical treatment.2-19 Many of the theoretical approaches
have been comprehensively reviewed by Ha¨nggi, Talkner, and
Borkovec.20 The coupling between the solvent and solute
degrees of freedom means that even when the products are well
separated and outside the region of interaction, they are not
isolated. Many chemical reactions in condensed phases are
accompanied by relaxation processes, and these have received
considerable attention by several theoretical groups.21-38

Chemical reactions in condensed phases are frequently
described using two different methods. The simple approach
consists of a Brownian particle moving in a one-dimensional
bistable potential; the dynamics of this system are described
by the Langevin equation.1 Grote and Hynes9 have extended
this approach to non-Markovian processes for a parabolic barrier,
where the dynamics are given by thegeneralizedLangevin
equation.39 At almost the same time, Carmeli and Nitzan40

generalized Kramers’ model to include memory effects in the
weak damping regime. These and other theories were tested
numerically by Straub, Borkovec, and Berne,6,7 and their results
were crucial in the development of the Pollak, Grabert, Ha¨nggi
turnover theory.14 All of these theories assume a Gaussian
random force for the generalized Langevin equation. In this
limit, the dynamics can be transformed into a Hamiltonian
description where the system islinearly coupled to a harmonic
bath.41

The other approach is based on molecular dynamics simula-
tions, which can account for a more general form of the
Hamiltonian. Special methods have been developed to acceler-
ate the barrier crossing and thereby numerically determine the
rate constant. Chandler2 showed that in the time-correlation
approach to rate constants42,43 the reactive flux rapidly decays
to a plateau value, which can then be associated with the slow

rate for crossing the barrier.3,5 Straub, Hsu, and Berne have
introduced an absorbing boundaries method for calculating the
reactive flux in the energy diffusion regime.44,45 Charutz and
Levine46-48 have made a successful attempt to separate the
relaxation processes from the actual barrier crossing in con-
densed phases and thus clarify and simplify our understanding
of the role of the solvent molecules in chemical reaction. Their
approach is based on the use of “dressed” variables,47 which
share many common features of the ordinary gas-phase vari-
ables. With the help of these dressed variables, it is possible
to compute those quantities that characterize the dynamics in
the gas phase,49 such as the product energy distribution and state
to state rates.

In this paper we link the simple stochastic approach with
molecular dynamics for systems in the weak coupling regime.
Motivated by the work of Zwanzig,21 we develop a new
theoretical method based on the reduction of the Hamiltonian
dynamics to an iterated map.50-53 This treatment has been
extensively applied to the theoretical study of the excitation and
ionization of hydrogen atoms by microwaves,54-56 and recently,
Rabani and Levine have applied it to the dynamics of high
molecular Rydberg states.57,58

We consider a rather simple, yet realistic, model Hamiltonian
for a system embedded in a condensed-phase environment,
which is described in section II. Three different systems are
studied; for vibrational energy transfer the system is described
by the linear harmonic or the nonlinear Morse oscillators, and
for chemical reaction the system is described by the double-
well model. The bath is modeled by an effective harmonic
Hamiltonian (a collection of harmonic modes),37 which can be
fit to a more realistic model, such as a solvent whose molecules
interact through the pairwise Lennard-Jones potential.59 The
coupling between the system and the bath modes is taken to be
nonlinear in the bath modes (i.e., it is expanded in a Taylor
series), so that our model can account for multiphonon energy
transfer and is more general than the stochastic approach.
Egorov and Berne obtained a quantum mechanical solution using
first-order perturbation theory for a similar model, where the
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primary system was a linear harmonic oscillator.59 They found
this model to be general enough to capture the essential features
of vibrational energy relaxation.

The reduction of the Hamiltonian description of the motion
into a map is discussed in section III. This reduction is based
on first-order perturbation theory,50-53 which is an adequate
approximation to the dynamics in the weak coupling regime.
The other ingredient needed for this reduction is the transforma-
tion of the conventional set of variables to action-angle
variables.50,60 This transformation is required by classical
perturbation theory and is the limiting step in the current
approach. Nevertheless, we show how approximate action-
angle variables50 do the job equally well. The resultant map
specifies the changes in the values of the system-bath action-
angle variables after several periods of the system. We note in
passing that Corte´s, West, and Lindenberg29 have applied
classical perturbation theory to a large class of system-bath
interaction potentials. However, their implementation of the
perturbation theory is very different from the present approach.29

In section IV, we invoke a “random phase” approximation,
which provides a way to further simplify the map. In this limit,
the description of the motion given by the map can be
immediately reduced to a Fokker-Planck equation in action
space.61,62 We discuss the validity of this approximation and
derive analytical expressions for the action-dependent diffusion
coefficients.40

In section V, we assess the accuracy of the map. We show
that the dynamics generated by numerically iterating the map
are in excellent agreement with the Hamiltonian dynamics for
all three systems. Moreover, it is shown that the kinetic
description given by the Fokker-Planck equation provides a
realistic approximation to the numerical results. Concluding
remarks are given in section VI.

II. Model Hamiltonian

We consider a simple model Hamiltonian that describes the
interactions of a system with a bath. Only systems with one
degree of freedom are studied here. Multidimensional systems
are left for future study. For vibrational energy transfer, the
system is described by either a harmonic or a Morse oscillator.
The double-well potential is used to model a chemical reaction.
The bath is modeled by an ensemble of harmonic oscillators,
which amounts to an effective harmonic Hamiltonian.37 The
coupling between the system and the bath is taken to be linear
in the system mode and is expanded in a Taylor series in the
bath modes.

Throughout this paper we use lower case symbols for the
system variables and upper case symbols for the bath variables.
The total Hamiltonian can be written as

whereh(q) is the Hamiltonian for the system,

In eq 2,q is the mass-weighted system coordinate with conjugate
momentump, andV(q) is the potential energy. As mentioned
before, we consider the following three forms forV(q); for the
harmonic oscillator we have

whereω is the vibrational frequency. For the nonlinear Morse
oscillator the potential is given by

whereD andâ are the well depth and the mass-weighted range
parameters of the Morse function, respectively. The double-
well potential is

wherec andd are the expansion coefficients. For reasons that
will become clear in the Appendix,k is taken to be positive
and not negative, as is commonly the case for the standard
symmetric representation of the double-well potential.

The bath Hamiltonian in the harmonic approximation takes
the form

where the summation indexR labels the mass-weighted bath
coordinatesQR, which have conjugate momentaPR, and
frequenciesωR; Nb is the number of bath modes.

As mentioned previously, the system-bath coupling is taken
to be linear in the system coordinate and is expanded in a Taylor
series in the bath coordinates.59 For clarity and simplicity we
neglect all off-diagonal terms in the Taylor expansion. (The
generalization of the present treatment to account for such terms
is rather straightforward, but is left for future study.) In the
present work the coupling is given by

wheref(Q) is the Taylor expansion of the coupling in the bath
coordinates (neglecting the off-diagonal terms),

wheregR is the linear coupling strength,hR is the quadratic
coupling strength, etc.

Having defined the Hamiltonian, we can proceed to the
reduction of the Hamiltonian description of the motion to a map.

III. The Classical Map

The derivation of the map follows the standard procedure
for reducing the Hamiltonian description of the motion to an
iterated map.50-53 Instead of numerically solving the classical
equations of motion in time, we will describe the dynamics of
our system and bath by means of a difference equation. The
set of difference equations, which specify the map, generates
the evolution of the system and bath in discrete time intervals.

As mentioned previously, we are primarily interested in the
energy exchange between the system and the bath in theweak
coupling regime. Therefore, it is natural to use classical
perturbation theory to obtain the map. Below we discuss the
validity of this perturbation procedure and provide numerical
as well as analytical arguments that support the use of
perturbation theory.

Perturbation theory requires the use of a set of adiabatic
variables, for which we use action-angle variables. It is well-

H ) h(q) + Hb(Q) + V(q,Q) (1)

h(q) ) 1
2
p2 + V(q) (2)

V(q) ) 1
2
ω2 q2 (3)

V(q) ) D(1 - e-âq)2 (4)

V(q) ) 1
2
kq2 + cq3 + dq4 (5)

Hb(Q) )
1

2
∑

R

Nb

PR
2 +

1

2
∑

R

Nb

ωR
2QR

2 (6)

V(q,Q) ) qf(Q) (7)

f(Q) ) ∑
R

Nb

gRQR + ∑
R

Nb

hRQR
2 + ... (8)
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known that the actions undergo relatively small changes in
time,52 similar to the small mixing between different quantum
states due to a perturbation, in quantum mechanics. There is
one trivial nonclassical aspect of our use of action variables:
we compute them in units of Planck’s constant, so as to provide
a direct correspondence with quantum numbers. However this
is only a correspondence, and the actual dynamics follow the
classical evolution equations. The system Hamiltonian,h(q),
and the bath Hamiltonian,Hb(Q), are chosen to be the zero-
order reference Hamiltonians and are rewritten for each system
in terms of the action-angle variables. This is done separately
for each system studied here, since the canonical transformation
to action-angle variables depends on the system.

We now outline the steps required for the derivation of the
map. The change in the action-angle variables is obtained by
integrating Hamilton’s equations of motion over timeτ:

for the system mode, and

for the bath modes. In the above equations,i and θ (IR and
ΘR) are the system (bath modeR) action and angle variables.
The upper limit of the integral,τ, is simply the time step of the
integration. In molecular dynamics simulations this time step
is chosen to be small enough so that the appropriate derivatives
in eqs 9-12 are replaced by their current values and can be
taken out of the integral.63 In contrast, the map is obtained by
extending the time step to values that are much larger than what
current numerical integrators can handle. In fact, we are
interested in time steps that are on the order of several
vibrational periods of the system. Hence, instead of replacing
the Hamiltonian derivatives in eqs 9-12 by their current values,
we approximate them using first-order classical perturbation
theory. In other words, the perturbation is computed for the
durationτ by using the current value of the action variables,
while the angle variables vary with time according to the zero-
order Hamiltonian. The values of the action-angle variables
are then updated, and first-order perturbation theory is used
again, etc. [The current approach is somewhat similar to the
so-called numerical analytical propagator algorithm (NAPA),
which was developed by Tuckerman, Martyna, and Berne for
systems with multiple time scales.64-67 Here, however, we are
primarily interested in analytical corrections to the unperturbed
motion, which are given numerically by NAPA.]

The above procedure is based on the assumption that during
one integration step the action variables are varying slowly. This
condition can be satisfied by properly choosing the integration
stepτ. In the weak coupling regime, the time step can be taken
to be as large as several vibrational periods of the system. For
symmetry reasons we use a time step that is equal to an integer
multiple of the system period (this time step will depend on
the value of the system action). To zeroth order, the change in
the system angleθ is equal to 2πn (wheren is the number of

vibrational periods inτ ). Therefore, we eliminate this variable
from the equations by a simple transformation, which replaces
the anglesΘR by the difference anglesφR.

The advantage of the mapping procedure is that for the present
set of systems we can analytically compute the changes in the
action-angle variables for timeτ. This reduces the numerical
effort needed to solve the classical equation of motion.
Moreover, it enables a detailed examination of the integrated
equation of motion, which can lead to further simplifications
of the description of the motion.57,58

A. The Harmonic Oscillator. The harmonic oscillator has
an analytic solution in the bilinear coupling limit (i.e., when
only the first term in eq 8 is retained), so it is a natural system
to test our method. In the action-angle variables the Hamil-
tonian take the form60,68

where i and ω (IR and ΩR) are the system (bath modeR)
vibrational action and frequency, respectively, andV(q,Q) is
given by eq 7. In terms of the action-angle variables, the mass-
weighted coordinatesq andQR are given by

and

To simplify the integrals in eqs 9 and 11, we note the relation
between the timet and the system vibrational angle variableθ
) ωt, to zeroth order in the coupling. This implies thatθ can
serve as a scaled time variable. The bath angle variables take
a particularly simple form in zeroth order, which is also given
in terms of the scaled time variablesθ:

where øR ) ΩR/ω is the ratio between the bath vibrational
frequency of modeR and the system frequency, andφR is
introduced as a phase shift, which is the difference in the angle
between the bath vibrational modeR and the system vibrational
mode at the origin of time.

With these definitions, the map can readily be obtained. The
changes in the action variables duringn periods of the system
(τ ) 2πn/ω) are obtained by inserting eq 13 into eqs 9 and 11.
In terms of the scaled time variable,θ, we find

for the system, and

for the bath modeR. In the above we have used an abbreviated

∆i ) - ∫0

τ
dt

∂H
∂θ

(9)

∆θ ) ∫0

τ
dt

∂H
∂i

(10)

∆IR ) - ∫0

τ
dt

∂H
∂ΘR

(11)

∆ΘR ) ∫0

τ
dt

∂H
∂IR

(12)

H ) ωi + ∑
R

Nb

ΩRIR + V(q,Q) (13)

q ) x(2i/ω) cos(θ) (14)

QR ) x(2IR/ΩR) cos(ΘR) (15)

ΘR ) ΩRt + φR ) øRθ + φR (16)

∆i )
1

ω
∑

R

Nb [gR
/ ∫-πn

πn
dθ sin(θ) cos(øRθ + φR) +

ha
/

2
∫-πn

πn
dθ sin(θ) cos2(øRθ + φR) + ...] (17)

∆IR
1
ω [gR

/ ∫-πn

πn
dθ cos(θ) sin(øRθ + φR) +

hR
/

2 ∫-πn

πn
dθ cos(θ) sin(2øRθ + 2φR) + ...] (18)
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notation for the scaled coupling constantsgR
/ and hR

/, which
depend on the current values of all action variables

The integration overθ in eqs 17 and 18 can be done by using
standard trigonometric relations69 and leads to the following
explicit expressions for the changes in the system and bath
actions duringn vibrational periods of the system:

where the functionsf(x) andF(x) are given by

and we have used the notation sinc(x) ) sin(x)/x for the sinc
function.70 To complete the specification of the map, we need
the changes (per period) of the phase angles,φR. Since the
first-order correction forφR is relatively small, we use the change
computed for an unperturbed motion, i.e., the zero-order change

It is interesting to compare the contribution to the changes
in the action variables from the different term in eqs 20 and
21. We expect the magnitude of the couplinggR

/ and hR
/ to

vary smoothly withR (see eq 54 below). Therefore, the role
of the different bath modes will be governed by the sinc
function, which is known to have a maximal value at the
origin.70 This implies that the “resonant modes”, i.e., modes
that satisfyøR ) s-1, wheres is a positive integer, will have a
dominant contribution to the dynamics of the system. It is also
clear from eqs 20 and 21 that the first term in the Taylor
expansion of the coupling sets a 1:1 resonance, while the second
term sets a 1:2 resonance, etc.

Before we discuss some more realistic systems, let us examine
the validity of the perturbation approximation. The change in
the system action (given by eq 20) will provide a limit on the
magnitude of the coupling strength, since it amounts to the sum
of changes due to all bath modes. Hence we require that

for the perturbation method to be valid. We also carry out the
treatment for the bilinear coupling only. The generalization to
the complete coupling term can be done using similar arguments.
In the bilinear coupling limit, the changes in the system action
are given by

Since sinc((øR - 1)πn) > sinc((øR + 1)πn) for eachR, we
neglect the latter and replace sinc((øR - 1)πn) sin(φR) by its
maximal value of 1 for each mode. This clearly overestimates
the magnitude of the change ini, since not all bath modes are
in phase with the system oscillator and not all of them are in a
1:1 resonance. In the limit of equal “kicks” from all bath modes
we have

A numerical illustration of the accuracy of the maps is given in
section V for the harmonic oscillator and the other two systems
studied here. Note that for small energies, i.e., wheni f 0,
the present approach breaks down, because eq 26 can no longer
be satisfied. The present approach will also break down for
high energies near the dissociation in the Morse oscillator
studied below.

B. The Morse Oscillator. We now turn to the Morse
oscillator, which is a more realistic model for molecular systems.
The map for this system is similar to the harmonic map, even
though the two Hamiltonians differ significantly. The Hamil-
tonian in action-angle variables takes the form60

whereD andâ are the well depth and the mass-weighted range
parameters of the Morse potential, respectively. To obtain the
proper harmonic limit, we modify the couplingV(q,Q) between
the Morse oscillator and the bath. Specifically we replace eq 7
by

which is nonlinear in both the system and bath displacement
and reduces to eq 7 for small values ofq (f(Q) is given by eq
8). In terms of the action-angle variablesi andθ, the mass-
weighted coordinateq is given by60

whereε is the Morse anharmonicity parameter

The changes in the action variables duringn vibrational
periods of the system (τ ) 2πn/ω(i)) are obtained following
similar steps taken to derive the harmonic map. Note that for
the Morse oscillator the time stepτ depends on the current value
of the system action. Thus we do not use a constant time step
when integrating eqs 20 and 21, but rather change the time step
between each update of the actions. This leads to the following

gR
/ ) gR(2i/ω)1/2(2IR/ΩR)1/2

hR
/ ) hR(2i/ω)1/2(2IR/ΩR) (19)

∆i )
πn

ω
∑

R

Nb [gR
/f(øR) sin(φR) +

1

4
hR
/f(2øR) sin(2φR) + ...]

(20)

∆IR ) πn
ω [gR

/F(øR) sin(φR) + 1
2
hR
/F(2øR) sin(2φR) + ...]

(21)

f(x) ) sinc((x + 1)πn) - sinc((x - 1)πn)

F(x) ) sinc((x + 1)πn) + sinc((x - 1)πn) (22)

∆φR ) 2πnøR (23)

|∆i| < i (24)

∆i )
πn

ω
∑

R

Nb

gR
/ sin(φR) (sinc((øR + 1)πn) -

sinc((øR - 1)πn)) < i (25)

gR
/ < ωi

nπNb
(26)

H ) â(2D)1/2i -
1

2
â2i2 + ∑

R

Nb

ΩRIR + V(q,Q) (27)

V(q,Q) ) -(1 - eâq) f(Q)/â (28)

q ) â-1 ln(1 + xε(i) cos(θ)

1 - ε(i) ) (29)

ε(i) ) â(2/D)1/2i - 1
2D

â2i2 (30)
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set of equations for the changes in the action variables during
n vibrational periods:

where for the Morse potential the functionsf(x) andF(x) take
the form

In the above equationsω(i) ) â(2D)1/2 - â2i is the action-
dependent vibrational frequency of the Morse system, andøR(i)
) ΩR/ω(i) is the ratio between the bath vibrational frequency
of modeR and the system frequency. Unlike the harmonic case,
this ratio depends on the current value of the vibrational action
i. The scaled coupling constants take a slightly different form:

The map is completed by specifying the change, duringn
periods, in the phase anglesφR, which is given for an
unperturbed motion by

The harmonic limit of the Morse map is obtained by carefully
taking the appropriate limit of the Morse potential parameters.
Specifically, whenâ f 0 andD f ∞ so that the productâxD
is constant, eqs 31 and 32 reduce to eqs 20 and 21, respectively.

C. The Double Well Potential. We now turn to the map
for the double-well potential. Unlike the previous two systems,
an exact transformation to action-angle variables for the double-
well potential does not exist. Therefore, we derive approximate
action-angle variables using a procedure similar to one
suggested by Born.50 The details of the transformation can be
found in the Appendix. The Hamiltonian in action-angle
variables takes the form

The energy of the double-well potential,E(i), is given in the
Appendix. The coupling,V(q,Q), is given by eq 7, and the
mass-weighted coordinateq is defined in the Appendix (cf. eq
A12).

With these definitions, the map can be obtained following
the procedure outlined in the previous subsection. We note in
passing that the time stepτ ) 2πn/ω(i) depends on the current
value of the action, just like in the Morse oscillator. Performing
the mapping transformation, we find that the changes in the

action-angle variables duringn periods of the system are given
by

for the system action,

for the bath actions, and

for the change in the angle variables. The latter is given for
the unperturbed motion, i.e., the zero-order change. The
functions f(x) and F(x) for the double-well potential take a
different form:

whereJ′x(εx) denotes the derivative of the Anger function with
respect to its argument,71

For our purposes, it is sufficient to expand the derivative of
the Anger function in a power series inε ≈ (e1 + e2)/ (e1 -
e2), wheree1 ande2 are the roots of eq A4. Recall that one of
the roots is negative, so thatε is a direct measure of the
anharmonicity. Retaining only terms up to linear order inε,
we find

This approximation is consistent with the perturbative approach
taken in this paper and is numerically found to be realistic for
ε < 0.2 (for n ) 1 ).

In the above equationsω(i) ) ∂E(i)/∂i is the system
frequency, andøR(i) ) ΩR/ω(i) is the bath to system frequency
ratio. The scaled coupling constants are now expressed in terms
of the rootse1 ande2:

In the limit where ε f 0, eqs 37 and 38 reduce to the
harmonic map given by eqs 20 and 21. This can be seen with
the help of the identities

∆i )
πn

ω(i)
∑

R

Nb [gR
/f(øR(i)) sin(φR) +

1

4
hR
/f(2øR(i)) sin(2φR) + ...]

(31)

∆IR )
πn

ω(i) [gR
/F(øR(i)) sin(φR) + 1

?
hR
/F(2øR(i)) sin(2φR) + ...] (32)

f(x) ) sinc((x + 1)πn) - sinc((x - 1)πn)

F(x) ) sinc((x + 1)πn) + sinc((x - 1)πn) +

2xε(i) sinc(πnx) (33)

gR
/ ) gR xε(i)(2IR/ΩR)1/2/((1 - ε(i))â)

hR
/ ) hRxε(i)(2IR/ΩR)/((1 - ε(i))â) (34)

∆φR ) 2πnøR(i) (35)

H ) E(i) + ∑
R

Nb

ΩRIR + V(q,Q) (36)

∆i )
πn

ω(i)
∑

R

Nb [gR
/f(øR(i)) sin(φR) +

1

4
hR
/f(2øR(i)) sin(2φR) + ...]

(37)

∆IR )
πn

ω(i) [gR
/F(øR(i)) sin(φR) + 1

2
hR
/F(2øR(i)) sin(2φR) + ...] (38)

∆φR ) 2πnøR(i) (39)

f(x) ) J′x(εx)

F(x) ) J′x(εx)/x + ((-)n - ε) sinc(πnx) (40)

J′x(εx) ) 1
2π ∫-π

π
dψ sin(nψ) sin[x(nψ - ε sin(nψ))] (41)

J′x(εx) ≈ 1
2
[sinc((x - 1)πn) - sinc((x + 1)πn)] +

ε

4
[sinc((x + 2)πn) + sinc((x - 2)πn) - 2sin(πnx)/(πn)]

(42)

gR
/ ) gR(e1 - e2)(2IR/ΩR)1/2

hR
/ ) hR(e1 - e2)(2IR/ΩR) (43)

sinc((x + 1)πn) + sinc((x - 1)πn) ) 1
x
[sinc((x - 1)πn) -

sinc((x + 1)πn) + (-)n2 sin(πnx)/(πn)] (44)

9384 J. Phys. Chem. A, Vol. 102, No. 47, 1998 Rabani and Berne



and

For finite anharmonicities, the map specified in eqs 37 and 38
is slightly different from the harmonic and Morse maps. The
main difference can be traced to higher order resonances in the
system mode, which arise from the more complicated dynamics
in the double-well potential (i.e., there are higher harmonics in
the form of the coupling between the system and the bath).
These higher harmonics enter the map through the second term
in eq 42.

IV. The Fokker -Planck Equation

In this section we introduce a random phase approximation,57

which will provide the grounds to further simplify the descrip-
tion of the motion. In this approximation, the maps can
immediately be reduced to a Fokker-Planck equation in action
space. However, this simplification is not trivial, and even
simple maps can give rise to quite complex evolution in action
space because of the dependence on the initial conditions.

The reduction of the maps to a Fokker-Planck equation is
not only an alternative way of describing the dynamics of the
system but rather a way of simplifying this description. The
reduction is based on the adiabatic nature of the action variables
and on the relatively rapid changes in the angle variables. In
the kinetic limit, the dynamics can be described by52

where∂JR t ∂/∂JR, and we use the notationJ1 t i andJR*1 t
IR. The coefficientsAR andBR,â are given by

and

The brackets,〈...〉, denote a particular way of averaging over
time. In the random phase approximation this average can be
taken as an average over the initial phases, which are uniformly
distributed between 0 and 2π. In other words, the averaging
over time is replaced by an average over the initial phases due
to the ergodicity of the angles. The assumption made is that
the changes in the phases are not correlated from one round to
the next. We note that it is possible to include correlations
between different rounds in a simple, yet ad hoc, way.52

In the random phase approximation, eq 46 can be reduced to
the so-called divergence form52

where DR,â are the diffusion coefficients. This form of the
Fokker-Planck equation can be obtained with the help of the
relationAR ) (1/2)∂JâBR,â, which was first derived by Landau.72

We note that this relation holds only in the random phase
approximation, which assumes a uniform distribution of the
angles. For real systems this is never the case, and therefore
the random phase limit is but an approximation.

The regime in which the random phase approximation is valid
for the current maps is obtained from an explicit calculation of
the evolution of the phases. The latter is given by∆φR )
2πnøR(i), for the unperturbed motion. In the random phase
approximation, it is assumed that the phaseφR varies so much
between one round to the next thatsin(φR) can be regarded as
a random variable. The analytical justification for this
approximation is that, in the limitn . 1, the change in the
phases is indeed very large. In some of the applications reported
in this paper we have usedn ) 20, in which the random phase
limit is shown to be adequate.

Based on the uniform distribution of the angles, the diffusion
coefficientsDR,â are given by

and all the other diffusion coefficients equal zero.f(x) andF(x)
are given in section III for the three systems studied here.

Equations 50-52 are the central results of this section. In
the random phase approximation, the ensemble-averaged motion
is diffusive, with no drift term. The diffusion coefficients
depend on the current value of all action variables and are
analytically given in the above equations. We note that it is
also possible to reduce the maps to a one-dimensional Fokker-
Planck equation in the system action only. The procedure can
be found in ref 21 and will not be repeated here.

The solution of the Fokker-Planck equation is not trivial
due to the fact that the diffusion coefficients depend on the
actions.61,62 The evolution in action space can be obtained by
adopting a semiclassical approach73 or using a numerical
procedure.74 Alternatively, one can obtain an approximate
solution using a Gaussian ansatz for the distribution.75

Before we present the results, we outline the differences
between the current approach and other approaches to the
problem. Based on the Langevin equation, Kramers derives a
one-dimensional Fokker-Planck equation for his chemical
reaction model in the low-viscosity limit,1,20 and others9,11,14,40

have extended Kramers’ approach for non-Markovian processes
by using a generalized Langevin equation.39 Both methods
assume a Gaussian random fluctuating force associated with
the thermal bath. The latter can be derived starting from a
Hamiltonian, in which the bath is described by a collection of
harmonic modes and the coupling islinear in the bath modes.41

Tuckerman and Berne showed that this simple model can
describe the energy relaxation in a particular highly nonlinear
system and bath.35 The present approach differs from previous
studies with respect to two major points: we explicitly take
the bath into account and therefore can handle nonlinear
couplings (even in the system mode), and we treat the kinetic
limit with a multidimensional Fokker-Planck equation in action
space.

Using the current results, it is possible to obtain the rate of
escape over the barrier in the double-well model20 and the mean
first passage time for energy accumulation in the two different
system oscillators.40 The derivation of these two important

D1,1 ( πn

2ω(i)) ∑
R

Nb {(gR
/)

2
f(øR(i))2 +

1

16
(hR

/)
2

f(2øR(i))2} (50)

DR,R*1 ) ( πn
2ω(i)){(gR

/)
2

F(øR(i))2 + 1
4
(hR

/)
2

F(2øR(i))2} (51)

D1,R*1 ) ( πn
2ω(i)){(gR

/)
2

f(øR(i)) F(øR(i)) +

1
8
(hR

/)
2

f(2øR(i)) F(2øR(i))} (52)

e1 - e2 ) -2x2 i/ω (45)

∂τP ) - ∑
R

Nb+1

∂JR
(ARP) +

1

2
∑
R,â

Nb+1

∂JR
∂Jâ

(BR,âP) (46)

A1 ) 〈∆i〉, AR*1 ) 〈∆IR〉 (47)

B1,1 ) 〈(∆i)2〉, BR*1,â*1 〈∆IR∆Iâ〉,
B1,R*1 ) BR*1,1〈∆i∆IR〉 (48)

∂τP )
1

2
∑
R,â

Nb+1

∂JR
(DR,â ∂Jâ

P) (49)

Nonlinear Systems Coupled to a Bath J. Phys. Chem. A, Vol. 102, No. 47, 19989385



quantities is left open for future study. Here instead we focus
on assessing the validity of the mapping procedure for energy
accumulation and dissipation.

V. Results

In this section we assess the accuracy of the mapping
procedure. The maps are solved numerically, and the results
are compared with the Hamiltonian dynamics for individual
trajectories as well as for an ensemble of trajectories. To
perform the calculation we represent the continuous bath by a
discretized sum of harmonic modes. We follow a procedure
which is slightly different from the standard one;76 namely, the
bath modes are generated from the density

whereγ ) 1.2 × 107. From now on we employ atomic units.
The linear dependence for small frequencies is consistent with
localized behavior of soft modes77 and has been observed in
Lennard-Jones liquids.78,79

To assess the accuracy of the map, we retain only the leading
term in the system-bath coupling, i.e., the sum of bilinear terms.
The coupling between the system and the bath due to the
quadratic and higher order terms is typically smaller than the
coupling due to the bilinear term. In particular, those terms
are not expected to contribute significantly to energy dissipation
when the system frequency is well inside the relevant range of
the spectral density (this is the case for all the systems studied
below).80 Therefore, we focus only on the simpler case of
bilinear system-bath coupling and leave the assessment of the
validity of the map when higher order terms are included for
future study.81

In the present case, the linear coupling coefficients were
calculated according to

whereδω ) ωmax/Nb, ωmax is a cutoff frequency introduced for
numerical reasons, andJ(ω) is the spectral density. For all the
results shown in this section we use a cutoffωmax ) 9 × 10-4

in atomic units. Within the deformation potential approxima-
tion,76,82 the spectral density takes the form

which is proportional toω2 for small frequencies, i.e., a super-
ohmic spectral density.λ is the overall system-bath coupling
strength. We note that when necessary, the higher order
coupling terms can be obtained by following the procedure
suggested by Egorov and Berne.59

It is rather straightforward to generate trajectories using the
map. Given the current value of the actions and the phases,
one computes the value of the change and updates the actions
and angles. This procedure is repeated until the desired time
is reached. The physical time is increased by one period (τ )
from one round to the next. To compute the actual change in
the actions, we use a predictor-corrector algorithm, which is
essential to ensure numerical stability of the map. In the first
step, we predict the change in the action variables using the
current value of the actions. The second step corrects the change
in the action variables given their predicted value. The
procedure is required since the maps were obtained by first-
order perturbation theory, and therefore they do not preserve

phase space volume (the maps were not derived from a
generating function). Our predictor-corrector method is thus
equivalent to symplectic integrators used in classical molecular
dynamics simulations.63

To compare individual trajectories, we set the initial action
and angle variables of the Hamiltonian dynamics to be equal
to the initial actions and phases of the map, respectively. The
latter are chosen from a Maxwell-Boltzmann distribution,
excluding the system action which takes a sharp value at the
origin of time. This implies that the angles are selected from
a random distribution between 0 and 2π, and the actions are
generated from exp(-ΩRIR/kbT)/Q, whereT is the temperature
(T ) 3.17× 10-3 au for all results shown here) andQ is the
normalization of the distribution function. This procedure
amounts to a factorization of the initial distribution, that is, in
the spirit of the perturbation approximation we neglect the
coupling between the system and the bath for the initial
conditions. We note that this approximation is not required and
is introduced for simplicity.

In Figures 1-3 we show typical trajectories for the three
systems under study. The mapped trajectories are characterized
by discontinuous jumps in their actions, because we compute
the action at large time intervals. In Figures 1 and 2 we use
relatively large coupling coefficients (λ ) 1.1 × 10-11 ), and
to ensure an adequate description of the map, the time step is
set to one vibrational period of the system, i.e.,n ) 1. The
results shown in Figure 3 are for a smaller overall system-
bath coupling strength,λ ) 3.5 × 10-12, so that the time step
is set to 20 vibrational periods of the system, i.e.,n ) 20. With
these choices of the time step, the mapped dynamics require
20% and 1% the CPU time required for the Hamiltonian
dynamics (which are much more accurate), respectively, and
for an arbitrary time step we find that the ratio is about 1:5n.

F(ω) ) 2γω exp(-γω2) (53)

gR
2 ) (J(ωR)/F(ωR))δω ) 2λxγ

π
ωRδω (54)

J(ω) ) 4λγxγ
π

ω2 exp(-γω2) (55)

Figure 1. Plots of typical trajectories for the harmonic, Morse, and
double-well systems. Shown are the changes in the system action,i,
vs the reduced timet/Ts, whereTs is the system period at the origin of
time. The following parameters are used:ω ) 5.4 × 10-4 for the
harmonic oscillator;D ) 0.04 andâ ) 0.61 for the Morse oscillator;
k ) 0.03,c ) -0.01, andd ) 1.5× 10-3 for the double-well potential;
the coupling strengthλ ) 1.1 × 10-11 and the reduce mass ism )
115 570 for all three cases. The solid and dashed lines are the results
for the mapped and Hamiltonian trajectories, respectively. Note the
excellent agreement between the current approach and the Hamiltonian
dynamics.

9386 J. Phys. Chem. A, Vol. 102, No. 47, 1998 Rabani and Berne



Since the map is only an approximation to the true dynamics,
a real systematic comparison of CPU time with molecular
dynamics is not possible. The reason is that the energy
conservation in the map, though very stable, is at a level for
which ordinary integration schemes, such as the Verlet integra-
tor, explode. Since a speedup of the CPU time is not the major
goal of the mapping procedure, we do not elaborate on this point
any further.

It is clearly seen in Figures 1-3 that the map provides a
realistic description of the dynamics for all three systems. The
trajectories are in excellent agreement with the exact Hamilto-
nian dynamics. Note the small changes in the system action
during one iteration, which is a necessary condition for the
mapping procedure to work. We have chosen the coupling

parameters to provide significant changes in the action over the
time scale shown in Figures 1 and 2. In many realistic systems,
this time is much longer and requires many iteration of the map.
In such cases, the natural time step (τ ) used to obtain the map
can be much larger than the vibrational period of the system,
but not so large that the changes in the system action during
one iteration exceed the value of the action. This is exactly
the case shown in Figure 3, in which the time step of the map
is increased to 20 vibrational periods.

We find that the agreement between the map and the
Hamiltonian dynamics is excellent for a large range of initial
conditions and different sets of parameters and couplings. The
map provides better results at lower energies due to the energy
scaling of the system-bath coupling. We do, however, find
some trajectories that deviate slightly from the Hamiltonian
dynamics. These are only a small fraction of the total number
of trajectories used to average over initial conditions, and
therefore they have a minor effect on averaged properties.

The results for an ensemble of trajectories are shown in Figure
4. We plot the second moment of the system action (µ2 ) 〈i2〉
- 〈i〉2, where 〈...〉 denote an ensemble average) versus the
reduced time for all three systems. The agreement between the
mapped and Hamiltonian ensembles is excellent for a wide range
of initial energies. We note that a similar agreement is obtained
for the first moment of the system action, which is related to
the energy relaxation.

In Figure 5 we compare the analytical results for the second
moment in the system action with results obtained by numeri-
cally iterating the maps. It is clear that for the present coupling
regime the random phase approximation adequately describes
the dynamics of the system, so that the kinetic description given
by the Fokker-Planck equation is valid. The harmonic system
displays a lineari dependence of this second moment, while
both the Morse and double-well systems deviate from linearity
at large values ofi. This behavior can be traced to the fact that
the frequency,ω, is independent of the actioni for the harmonic
system.

Figure 2. The same as Figure 1 but for a different set of system
parameters:ω ) 3.1 × 10-4 for the harmonic oscillator;D ) 0.02
andâ ) 0.43 for the Morse oscillator;k ) 0.01,c ) -0.003, andd )
4.5 × 10-4 for the double-well potential.

Figure 3. The same as Figure 1 but for a different coupling strength,
λ ) 3.5× 10-12. This coupling strength induces much smaller energy
exchanges between the system and the bath, and therefore we use a
much larger integration step for the map (n ) 20).

Figure 4. Plots of the second moment of the system action vs reduced
time t/Ts, whereTs is the system period at the origin of time. The lines
and symbols are the results of the maps and Hamiltonian dynamics,
respectively. The results are averaged over 300 trajectories andNb )
1000. The initial system actions are 1.5, 3.5, and 6.5 in increasing slope
order. Similar agreement is found for the first moment too.
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VI. Concluding Remarks

We have shown that the dynamics of a system coupled to a
bath can be captured by a simple map. The map provides a
realistic approximation to the dynamics, not only for averaged
properties but also for individual trajectories, and it works
equally well for linear and nonlinear systems. The map is not
only is an efficient way to simulate the dynamics of the system
but also provides asimplified description for the different
Hamiltonians, and it highlights the various coupling parameters
that govern the motion of the system.

In the random phase approximation, the maps can be reduced
to the Fokker-Planck equation. This kinetic description is not
only an alternative way of describing the dynamics of the system
but rather a way of simplifying this description and providing
useful insights into the problem. We have derived explicit
analytic expressions for the energy-diffusion coefficients in
terms of the various parameters (coupling strength, frequency,
initial energy, etc.).

The treatment of higher order couplings which is required
for more realistic systems, the solution of the multidimensional
Fokker-Planck equation, and the application of the mapping
method to calculate rate constants are still open problems for
future study.
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Appendix A: Approximate Action -Angle Variables for
the Double-Well Potential

In this Appendix we derive approximate action-angle
variables for the double-well potential in the form of an

expansion in powers of the small anharmonic terms in the
potential. We seek an expression of the energy of the double-
well in terms of the action variablei and for a relation between
the displacementq and the action-angle variables. The action
variablei is defined by

where

and theej’s are the roots (in ascending order,|e1|, |e2| < e3 <
e4) of

The integration of eq A2 can be done by means of the
substitution

and leads to an explicit expression for the actionsij in terms of
the rootse1 ande2:

The roots,ej, can be obtained by expanding them in a power
series in d, or alternatively by adopting a self-consistent
approach, such as the Newton-Raphson method.83 Since the
roots depend on the system energyE, we havei(E) and also
E(i) by inverting eq A1. This is one of the goals set for this
Appendix.

Next we calculateq in terms of the action-angle variablesi
andθ. To the order required, the angle is given by

where theKj’s are obtained using A5:

In the above equationsω(i) ) ∂E(i)/∂i is the action-dependent
frequency,

Figure 5. Plots of the second moment of the system action vs its initial
value i0. The lines are the results of the the analytical formula given
by eqs 50-52, and the symbols numerical solution of the maps. The
numerical results are averaged over 1000 trajectories andNb ) 10 000.
The number of vibrational periods in one time step isn ) 20. Note the
nonlinear dependence ofµ2(i) for the Morse and double-well systems.
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and

The approximations forκ and forε in eqs A9 and A10 can be
obtained from an expansion of the roots in a power series ind.

Finally, we set the origin of the angleψ to be on the inner
turning point (which ise1 ), so that the angle variable takes the
form

and the displacementq is

We have compared this analytic solution with trajectories
obtained by an exact numerical solution of Hamilton’s equations
of motion for the one-dimensional double-well potential. The
agreement is found to be excellent, even for energies that are
very close to the barrier. Note that the agreement depends on
the values of the rootse3 ande4.
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