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Iterated maps, which mimic the motion of nonlinear systems coupled to a bath, are described in the weak
coupling regime. Classical time-dependent perturbation theory is used to derive the maps. To study vibrational
energy transfer, the system is modeled by the harmonic and Morse oscillators. For chemical reactions the
system is described by the double-well potential. Particular attention is given to the coupling between the
systems and the bath, which is taken to be nonlinear in the bath modes. The maps provide a very efficient
way to numerically simulate the dynamics of the systems, but are unique in their ability to delineate the
various coupling parameters that govern the dynamics. A simple “random phase” limit of the maps is discussed
and leads to a kinetic description of the dynamics given by a multidimensional FeRkerck equation.
Explicit expressions for the energy-diffusion coefficients are obtained.

I. Introduction rate for crossing the barrié® Straub, Hsu, and Berne have
The pioneering work of Krametstreats the process of introo_luced an absorbing bou_nda_ries me_thod for calculating the
crossing a barrier as one that is governed by Brownian dynamics,féactive flux in the energy diffusion reginfé*> Charutz and
in which the surrounding molecules play a major role. lItis a Levine'®*® have made a successful attempt to separate the
well-recognized fact that the process of crossing a barrier in rélaxation processes from the actual barrier crossing in con-
condensed phases is a rare event which requires speciafl€nsed phases and thus clarify and simplify our understanding
theoretical treatmeritl® Many of the theoretical approaches of the role _of the solvent molecules in chemical rgactlon.. Their
have been comprehensively reviewed bingigi, Talkner, and ~ @Pproach is based on the use of “dressed” variadiledjich
Borkovec?® The coupling between the solvent and solute Sharé many common features of the ordinary gas-phase vari-
degrees of freedom means that even when the products are welpPes- With the help of these dressed variables, it is possible
separated and outside the region of interaction, they are nott® compute those quantities that character.lze. the dynamics in
isolated. Many chemical reactions in condensed phases ardN€ gas phas€such as the product energy distribution and state
accompanied by relaxation processes, and these have receivetf Staté rates.
considerable attention by several theoretical gréps. In this paper we link the simple stochastic approach with
Chemical reactions in condensed phases are frequentlymolecular dynamics for systems in the weak coupling regime.
described using two different methods. The simple approach Motivated by the work of Zwanzig; we develop a new
consists of a Brownian particle moving in a one-dimensional theoretical method based on the reduction of the Hamiltonian
bistable potential; the dynamics of this system are describeddynamics to an iterated ma&p.>® This treatment has been
by the Langevin equatich. Grote and Hynéshave extended  extensively applied to the theoretical study of the excitation and
this approach to non-Markovian processes for a parabolic barrier,ionization of hydrogen atoms by microwavs?® and recently,
where the dynamics are given by tigeneralizedLangevin Rabani and Levine have applied it to the dynamics of high
equatior?® At almost the same time, Carmeli and Nit#an ~ molecular Rydberg stat€$>8
generalized Kramers’ model to include memory effects in the  We consider a rather simple, yet realistic, model Hamiltonian
weak damping regime. These and other theories were testedor a system embedded in a condensed-phase environment,
numerically by Straub, Borkovec, and Befteand their results which is described in section Il. Three different systems are
were crucial in the development of the Pollak, Grabertdgta studied; for vibrational energy transfer the system is described
turnover theory? All of these theories assume a Gaussian by the linear harmonic or the nonlinear Morse oscillators, and
random force for the generalized Langevin equation. In this for chemical reaction the system is described by the double-
limit, the dynamics can be transformed into a Hamiltonian well model. The bath is modeled by an effective harmonic
description where the systemlisearly coupled to a harmonic ~ Hamiltonian (a collection of harmonic modégwhich can be
bath#! fit to a more realistic model, such as a solvent whose molecules
The other approach is based on molecular dynamics simula-interact through the pairwise Lennard-Jones potepitialhe
tions, which can account for a more general form of the coupling between the system and the bath modes is taken to be
Hamiltonian. Special methods have been developed to accelernonlinearin the bath modes (i.e., it is expanded in a Taylor
ate the barrier crossing and thereby numerically determine theseries), so that our model can account for multiphonon energy
rate constant. Chandfeshowed that in the time-correlation transfer and is more general than the stochastic approach.
approach to rate constaft43the reactive flux rapidly decays Egorov and Berne obtained a quantum mechanical solution using
to a plateau value, which can then be associated with the slowfirst-order perturbation theory for a similar model, where the
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primary system was a linear harmonic oscill&bThey found wherew is the vibrational frequency. For the nonlinear Morse
this model to be general enough to capture the essential featuresscillator the potential is given by
of vibrational energy relaxation.

The reduction of the Hamiltonian description of the motion V(g) = D(1 — e 792 4)
into a map is discussed in section Ill. This reduction is based .
on first-order perturbation theof§; 53 which is an adequate whereD andp are the well depth and the mass-weighted range
approximation to the dynamics in the weak coupling regime. Parameters of the Morse function, respectively. The double-
The other ingredient needed for this reduction is the transforma- Well potential is
tion of the conventional set of variables to actieangle 1
variables®0 This transformation is required by classical V(q) = =kef + ccf + ddf (5)
perturbation theory and is the limiting step in the current 2
approach. Nevertheless, we show how approximate aetion
angle variable® do the job equally well. The resultant map
specifies the changes in the values of the systbath action-
angle variables after several periods of the system. We note in
passing that Cortg West, and Lindenbet?) have applied
classical perturbation theory to a large class of systbath
interaction potentials. However, their implementation of the
perturbation theory is very different from the present apprééch. 1Mo 1Mo

In section 1V, we invoke a “random phase” approximation, H,(Q) = _zpa2 4 _zwa2Qa2 (6)
which provides a way to further simplify the map. In this limit, 24 24
the description of the motion given by the map can be
immediately reduced to a FokkePlanck equation in action  where the summation index labels the mass-weighted bath
spacef162 We discuss the validity of this approximation and coordinatesQ,, which have conjugate moments,, and
derive analytical expressions for the action-dependent diffusion frequenciesvq; Ny is the number of bath modes.
coefficients?® As mentioned previously, the systerhath coupling is taken

In section V, we assess the accuracy of the map. We showto be linear in the system coordinate and is expanded in a Taylor
that the dynamics generated by numerically iterating the map series in the bath coordinate’s.For clarity and simplicity we
are in excellent agreement with the Hamiltonian dynamics for neglect all off-diagonal terms in the Taylor expansion. (The
all three systems. Moreover, it is shown that the kinetic generalization of the present treatment to account for such terms
description given by the FokkePlanck equation provides a is rather straightforward, but is left for future study.) In the
realistic approximation to the numerical results. Concluding present work the coupling is given by
remarks are given in section VI.

V(a.Q) = df(Q) (1)

wheref(Q) is the Taylor expansion of the coupling in the bath
We consider a simple model Hamiltonian that describes the coordinates (neglecting the off-diagonal terms),

interactions of a system with a bath. Only systems with one

wherec andd are the expansion coefficients. For reasons that
will become clear in the AppendiX is taken to be positive
and not negative, as is commonly the case for the standard
symmetric representation of the double-well potential.

The bath Hamiltonian in the harmonic approximation takes
the form

Il. Model Hamiltonian

degree of freedom are studied here. Multidimensional systems No No
are left for future study. For vibrational energy transfer, the f(Q) = ZQQQQ + ZhaQa2 + .. (8)
system is described by either a harmonic or a Morse oscillator. (1 o

The double-well potential is used to model a chemical reaction. ] ) ) ) ]
The bath is modeled by an ensemble of harmonic oscillators, WNere gu is the linear coupling strengtti, is the quadratic
which amounts to an effective harmonic Hamilton®nThe coupling strength, etc. o
coupling between the system and the bath is taken to be linear Having defined the Hamiltonian, we can proceed to the
in the system mode and is expanded in a Taylor series in theeduction of the Hamiltonian description of the motion to a map.
bath modes.

Throughput this paper we use lower case symbols fqr the |11 The Classical Map
system variables and upper case symbols for the bath variables.

The total Hamiltonian can be written as The derivation of the map follows the standard procedure

for reducing the Hamiltonian description of the motion to an

H = h(a) + H,(Q) + V(a.Q) @ iterated map®>3 Instead of numerically solving the classical
) o equations of motion in time, we will describe the dynamics of
whereh(q) is the Hamiltonian for the system, our system and bath by means of a difference equation. The
set of difference equations, which specify the map, generates
h(ag) = 1. +V 2 the evolution of the system and bath in discrete time intervals.
(@) =2p"+ V() &) : . A .
2 As mentioned previously, we are primarily interested in the

. . . . . energy exchange between the system and the bath iwehk
In eq 2,qis the mass-weighted system coordinate with conjugate coupling regime. Therefore, it is natural to use classical
momentump, andV(q) is the potential energy. As mentioned perturbation theory to obtain the map. Below we discuss the

before, we consider the following three forms #(q); for the validity of this perturbation procedure and provide numerical
harmonic oscillator we have as well as analytical arguments that support the use of
perturbation theory.
V(q) zlwz qz 3) Rerturbation theory require; the use of a set of adiabatic
2 variables, for which we use actiemangle variables. It is well-
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known that the actions undergo relatively small changes in vibrational periods ir). Therefore, we eliminate this variable

time >2 similar to the small mixing between different quantum from the equations by a simple transformation, which replaces

states due to a perturbation, in quantum mechanics. There isthe anglegd, by the difference angleg,.

one trivial nonclassical aspect of our use of action variables: The advantage of the mapping procedure is that for the present

we compute them in units of Planck’s constant, so as to provide set of systems we can analytically compute the changes in the

a direct correspondence with quantum numbers. However thisaction—angle variables for time. This reduces the numerical

is only a correspondence, and the actual dynamics follow the effort needed to solve the classical equation of motion.

classical evolution equations. The system Hamiltonfdg), Moreover, it enables a detailed examination of the integrated

and the bath Hamiltoniarkln(Q), are chosen to be the zero- equation of motion, which can lead to further simplifications

order reference Hamiltonians and are rewritten for each systemof the description of the motiot:58

in terms of the actionangle variables. This is done separately ~ A. The Harmonic Oscillator. The harmonic oscillator has

for each system studied here, since the canonical transformatioran analytic solution in the bilinear coupling limit (i.e., when

to action—angle variables depends on the system. only the first term in eq 8 is retained), so it is a natural system
We now outline the steps required for the derivation of the to test our method. In the actierangle variables the Hamil-

map. The change in the actioangle variables is obtained by ~ tonian take the for:%8

integrating Hamilton’s equations of motion over time

Np
H=wi+ ZQ I, +V(0,Q) (13)
. v . oH a'a
Ai=— [ dt 9) 0
9H wherei and w (I, and Q) are the system (bath modg)
AO = frdt—. (10) vibrational action and frequency, respectively, and,Q) is
0 ol . . .
given by eq 7. Interms of the actierangle variables, the mass-
weighted coordinateg and Q, are given by
for the system mode, and
Ay g=+/(2i/w) cos@) (14)
Al,=~ [ dt@ (11) and
AO, = j:dthH (12) Q. = y/(2,/2,) cos@,) (15)
a
To simplify the integrals in egs 9 and 11, we note the relation
for the bath modes. In the above equationand 6 (I, and between the timé and the system vibrational angle variable
0,) are the system (bath mods¢ action and angle variables. = t, to zeroth order in the coupling. This implies titatan

The upper limit of the integrak, is simply the time step of the ~ Serve as a scaled time variable. The bath angle variables take
integration. In molecular dynamics simulations this time step @ particularly simple form in zeroth order, which is also given

is chosen to be small enough so that the appropriate derivativegh terms of the scaled time variablés

in eqs 9-12 are replaced by their current values and can be

taken out of the integr&®f In contrast, the map is obtained by O, = Qut+ ¢y =20 + ¢4 (16)

extending the time step to values that are much larger than what _ . ) o
current numerical integrators can handle. In fact, we are Wneréya = Qd/o is the ratio between the bath vibrational

interested in time steps that are on the order of several féquency of modex and the system frequency, agd is

vibrational periods of the system. Hence, instead of replacing introduced as a phase shift, which is the difference in the angle
the Hamiltonian derivatives in eqs-42 by their current values, ~ Petween the bath vibrational modeand the system vibrational

we approximate them using first-order classical perturbation mode at the origin of time. ) _

theory. In other words, the perturbation is computed for the  With these definitions, the map can readily be obtained. The
durationz by using the current value of the action variables, changes in the action variables duringeriods of the system
while the angle variables vary with time according to the zero- (7 = 27n/w) are obtained by inserting eq 13 into egs 9 and 11.
order Hamiltonian. The values of the actieangle variables N terms of the scaled time variablé, we find

are then updated, and first-order perturbation theory is used N

again, etc. [The current approach is somewhat similar to the . 1 2 . o .

so-called numerical analytical propagator algorithm (NAPA), Al =— Z Ya f_mda sin(®) cosf,0 + ¢,) +

which was developed by Tuckerman, Martyna, and Berne for w'a
systems with multiple time scalé&.5” Here, however, we are a om
primarily interested in analytical corrections to the unperturbed — [, d0sin@®) coS(,0 + ) + ... (17)
motion, which are given numerically by NAPA.] 2

The above procedure is based on the assumption that duringor the system, and
one integration step the action variables are varying slowly. This
condition can be satisfied by properly choosing the integration 1 -
stepr. In the weak coupling regime, the time step can be taken Al, = |gj, f_’mde cos@) sin(y,0 + ¢,) +
to be as large as several vibrational periods of the system. For % Jh*
symmetry reasons we use a time step that is equal to an integer o pan .
multiple of the system period (this time step will depend on Efﬂmde cos) sin(Zg,0 + 2¢,) + ... (18)
the value of the system action). To zeroth order, the change in
the system anglé is equal to zZn (wheren is the number of for the bath modet. In the above we have used an abbreviated

%
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notation for the scaled coupling constamgfs and h!, which Sincesind(yq — 1)n) > sinc({ + 1)zn) for eacha, we
depend on the current values of all action variables neglect the latter and replace sing((— 1)zn) sin(p.) by its
maximal value of 1 for each mode. This clearly overestimates
g = g,(2lw) 42 Q)" the magnitude of the change iinsince not all bath modes are
in phase with the system oscillator and not all of them are in a
ht = h,(2i /w)1/2(2| 4920 (19) 1:1 resonance. In the limit of equal “kicks” from all bath modes
we have

The integration ovef in eqs 17 and 18 can be done by using
standard trigonometric relatioi¥sand leads to the following

explicit expressions for the changes in the system and bath gy < nyCrUII\I (26)
actions duringn vibrational periods of the system: b
. ne " . 1., . A numerical illustration of the accuracy of the maps is given in
Al = ; Z 9uflra) Sin(p,) + Zhaf(z%a) sin(2p,) + ] section V for the harmonic oscillator and the other two systems
studied here. Note that for small energies, i.e., when 0,
(20) the present approach breaks down, because eq 26 can no longer
J. 1 be satisfied. The present approach will also break down for
Al, ==—|gsF(x,) sin@®,) +§h’(‘;F(2Xa) sin(2p,) + ] high energies near the dissociation in the Morse oscillator
@ studied below.
(21) B. The Morse Oscillator. We now turn to the Morse
where the function&(x) andF(x) are given by oscillator, which is a more realistic model for molecular systems.
The map for this system is similar to the harmonic map, even
f(X) = sinc(f + L)zn) — sinc(f — 1)n) though the two Hamiltonians differ significantly. The Hamil-

tonian in actior-angle variables takes the foftn
F(X) = sinc(k + 1)zn) + sinc(k — 1)zn) (22)

and we have used the notation sik)cE sin(X)/x for the sinc 1 No

function”® To complete the specification of the map, we need H = B(2D)"4 — -p%° + ZQ(Ja +V(@,Q) (27)
the changes (per period) of the phase anglgs, Since the 2 o

first-order correction fop, is relatively small, we use the change

computed for an unperturbed motion, i.e., the zero-order ChangewhereD andj; are the well depth and the mass-weighted range

A, = 271y, (23) parameters of the Morse potential, respectively. To obtain the
« @ proper harmonic limit, we modify the couplingq,Q) between

It is interesting to compare the contribution to the changes the Morse oscillator and the bath. Specifically we replace eq 7

in the action variables from the different term in egs 20 and Y
21. We expect the magnitude of the coupligh and h’; to
vary smoothly witha (see eq 54 below). Therefore, the role — _(1 — &P
of the different bath modes will be governed by the sinc V@Q) (1 eﬁ)f(Q)/ﬂ (28)
function, which is known to have a maximal value at the
origin.® This implies that the “resonant modes”, i.e., modes which is nonlinear in both the system and bath displacement
that satisfyy, = s, wheres is a positive integer, will have a  and reduces to eq 7 for small valuespff(Q) is given by eq
dominant contribution to the dynamics of the system. Itis also 8). In terms of the actionangle variables and 6, the mass-
clear from egs 20 and 21 that the first term in the Taylor weighted coordinateg is given by°
expansion of the coupling sets a 1:1 resonance, while the second
term sets a 1:2 resonance, etc.

Before we discuss some more realistic systems, let us examine

_1, |1+ +/e(i) cos@)
T ; Lt ; qg=pf In|————-—"—= (29)
the validity of the perturbation approximation. The change in 1—€()
the system action (given by eq 20) will provide a limit on the
magnitude of the coupling strength, since it amounts to the sum . o
of changes due to all bath modes. Hence we require that ~ wheree is the Morse anharmonicity parameter
|AI] < (24) 1
e(i) = B2/D)M4 — B2 (30)

for the perturbation method to be valid. We also carry out the 2D

treatment for the bilinear coupling only. The generalization to

the complete coupling term can be done using similar arguments.

In the bilinear coupling limit, the changes in the system action = The changes in the action variables duringvibrational

are given by periods of the systenr (= 27n/w(i)) are obtained following

similar steps taken to derive the harmonic map. Note that for
ol ) ) the Morse oscillator the time stemlepends on the current value

Al =— 29’& sin(g,,) (sinc(f, + 1)n) — of the system action. Thus we do not use a constant time step

w e ) ] when integrating eqgs 20 and 21, but rather change the time step
sinc(f, — 1)zn)) <i (25) between each update of the actions. This leads to the following
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set of equations for the changes in the action variables duringaction—angle variables during periods of the system are given

n vibrational periods:
Al =
an » o 1 o
— > | %fCra(D) sin@y) + —hef(2x, (1) sin(2p,) + ]
a)(l) a 4
(31)
Al, =
25 |0 sin@) + L) sin@p) + .| @2)

where for the Morse potential the functiof{g) and F(x) take
the form

f(x) = sinc(f + 1)zzn) — sinc(k — 1)xzn)
F(X) = sinc( + 1)zzn) + sinc(k — 1)zn) +
24/ €(i) sincrnx) (33)
In the above equations(i) = B(2D)Y2 — f? is the action-
dependent vibrational frequency of the Morse systemyafidl
= Qqlw(i) is the ratio between the bath vibrational frequency
of modea and the system frequency. Unlike the harmonic case,

this ratio depends on the current value of the vibrational action
i. The scaled coupling constants take a slightly different form:

Gi = 0u Ve()(2/ Q) (1 — €())B)
i, = hoVe()(@1/Q)I(L — €)B)
The map is completed by specifying the change, during

periods, in the phase angle,, which is given for an
unperturbed motion by

(34)

A, = 27y, (i) (35)
The harmonic limit of the Morse map is obtained by carefully

taking the appropriate limit of the Morse potential parameters.

Specifically, wheng — 0 andD —  so that the produgtv/D

is constant, egs 31 and 32 reduce to eqs 20 and 21, respectively.

C. The Double Well Potential. We now turn to the map
for the double-well potential. Unlike the previous two systems,
an exact transformation to actioangle variables for the double-
well potential does not exist. Therefore, we derive approximate
action—angle variables using a procedure similar to one
suggested by Bor#?. The details of the transformation can be
found in the Appendix. The Hamiltonian in actieangle
variables takes the form

Np

H = E(i) + ZQala + V(9,Q) (36)

The energy of the double-well potenti&(i), is given in the
Appendix. The couplingV(q,Q), is given by eq 7, and the
mass-weighted coordinatgis defined in the Appendix (cf. eq
Al12).

With these definitions, the map can be obtained following
the procedure outlined in the previous subsection. We note in
passing that the time step= 27n/w(i) depends on the current
value of the action, just like in the Morse oscillator. Performing
the mapping transformation, we find that the changes in the

by
Ai

Np

1
Gaf (o) SiN@,) + Zh’&f(Zxa(i)) sin(2p,) + ]
(37)

ol) 4

for the system action,

Al =

a
7n

w(i)

for the bath actions, and

[ GEFCLa) sinp,) + ShiF(22a(0) sin(2s) +..] (38)

Ag, = 2y, (i) (39)
for the change in the angle variables. The latter is given for
the unperturbed motion, i.e., the zero-order change. The
functions f(x) and F(x) for the double-well potential take a
different form:

f0) = J(ex9)

F(X) = J(ex)/x + ((—)" — €) sincgznx) (40)
whereJ(ex) denotes the derivative of the Anger function with
respect to its argument,

J(ex) = % f_ﬂndlp sin(y) sinfx(ny — € sin(my))] (41)

For our purposes, it is sufficient to expand the derivative of
the Anger function in a power series &~ (e; + )/ (e1 —
&), wheree; ande; are the roots of eq A4. Recall that one of
the roots is negative, so thatis a direct measure of the
anharmonicity. Retaining only terms up to linear ordekjn
we find

Ji(ex) ~ %[sinc((x — 1L)n) — sinc(x + 1)zn)] +

i [sinc((x + 2)zn) + sinc(k — 2)zn) — 2singznx)/(7zn)]
(42)

This approximation is consistent with the perturbative approach
taken in this paper and is numerically found to be realistic for
€ <02 (forn=1).

In the above equations(i) = 0E(i)/di is the system
frequency, ang(i) = Qd/w(i) is the bath to system frequency
ratio. The scaled coupling constants are now expressed in terms
of the rootse; andey:

0s = 0u(€y — )(21,/Q)™
hz = ha(el - eZ)(ZIOL/Q(x)
In the limit wheree — 0, eqs 37 and 38 reduce to the

harmonic map given by egs 20 and 21. This can be seen with
the help of the identities

(43)

sinc(x + 1)zzn) + sinc(k — 1)zn) = )—1([sinc((x — 1)n) —
sinc(f + 1)) + (—)"2 sin@nxX)/(zn)] (44)
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and The regime in which the random phase approximation is valid
for the current maps is obtained from an explicit calculation of
e —e=—2V2ilw (45) the evolution of the phases. The latter is given Ay, =

2ny(i), for the unperturbed motion. In the random phase
For finite anharmonicities, the map specified in eqs 37 and 38 approximation, it is assumed that the phasevaries so much
is slightly different from the harmonic and Morse maps. The between one round to the next tisa(¢,) can be regarded as
main difference can be traced to higher order resonances in the2 random variable. The analytical justification for this
system mode, which arise from the more complicated dynamics approximation is that, in the limibh > 1, the change in the
in the double-well potential (i.e., there are higher harmonics in phases is indeed very large. In some of the applications reported
the form of the coupling between the system and the bath). in this paper we have used= 20, in which the random phase

These higher harmonics enter the map through the second terndimit is shown to be adequate.
in eq 42. Based on the uniform distribution of the angles, the diffusion

coefficientsDy 4 are given by
IV. The Fokker—Planck Equation

Np
In this section we introduce a random phase approximafion, zn 2 12 i 12 .
which will provide the grounds to further simplify the descrip- D11 20(i) Z (90" o) + 16(h°‘) f@ra()2p (50)

tion of the motion. In this approximation, the maps can
immediately be reduced to a FokkePlanck equation in action an 2 o 12 o
space. However, this simplification is not trivial, and even Dge=1= (m){ (90" Flra(0)” + 7(n0)” F(214(1) } (51)
simple maps can give rise to quite complex evolution in action
space because of the dependence on the initial conditions. n 2 ) )
The reduction of the maps to a Fokke?lanck equation is ~ Dj g1 = (m){ (90) fOra() Flra() +
not only an alternative way of describing the dynamics of the
system but rather a way of simplifying this description. The 1(h,&)2 f(2x,(1)) F(ZXa(i))} (52)
reduction is based on the adiabatic nature of the action variables 8
and on the _rel_atively rapid _changes in the a_ngle variables. In and all the other diffusion coefficients equal zerf¢x) andF(x)
the kinetic limit, the dynamics can be describedby are given in section Il for the three systems studied here.
Npt1 Nyl Equations 56-52 are the central results of this section. In
_ - the random phase approximation, the ensemble-averaged motion
0.p = Z 8Ja(A°‘P) * 2 ; aJanﬁ(B‘*’ﬂP) (46) is diffusive, with no drift term. The diffusion coefficients
' depend on the current value of all action variables and are

o

whered;, = 3/0J,, and we use the notatiah = i andJy=1 = analytically given in the above equations. We note that it is
lo. The coefficientsA, andB,g are given by also possible to reduce the maps to a one-dimensional Fekker
Planck equation in the system action only. The procedure can
A =0 A=Al 0 47) be found in ref 21 and will not be repeated here.
The solution of the FokkerPlanck equation is not trivial
and due to the fact that the diffusion coefficients depend on the
actions®1-62 The evolution in action space can be obtained by
Bii= EﬂAi)ZD Boe1 g1 (A Al adopting a semiclassical appro&ttor using a numerical
B, . = By AAIAI((48) procedure? Alternatively, one can obtain an approximate

solution using a Gaussian ansatz for the distributfon.

Before we present the results, we outline the differences
between the current approach and other approaches to the
problem. Based on the Langevin equation, Kramers derives a
one-dimensional FokketPlanck equation for his chemical

The brackets[l..[] denote a particular way of averaging over
time. In the random phase approximation this average can be
taken as an average over the initial phases, which are uniformly
distributed between 0 andz2 In other words, the averaging

1 i —\/i i i 20 11,14,40
over time is replaced by an average over the initial phases dueLeaCt'ontm?jdzl Il<n the lO\,N wsco&:}yfhm’rt, al\r;ld (')(the_r%
to the ergodicity of the angles. The assumption made is that ave extended Kramers approach for non-viarkovian processes

the changes in the phases are not correlated from one round t(?y using a generahzed Langevin eq.uat%nBoth met.hods .
the next. We note that it is possible to include correlations assume a Gaussian random fluctuating force associated with

. - . the thermal bath. The latter can be derived starting from a
between different rounds in a simple, yet ad hoc, Way. S . h . )
In the random phase approximation, eq 46 can be reduced toHamllto_nlan, in which the bath.'s Qescr!bed by a coIIectnin of
. harmonic modes and the couplindiisear in the bath modest
the so-called divergence foPfh e
Tuckerman and Berne showed that this simple model can

Np+1 describe the energy relaxation in a particular highly nonlinear
9P == 3, (D, 49, P) (49) system and batff. The present approach differs from previous
2 ; R studies with respect to two major points: we explicitly take

the bath into account and therefore can handle nonlinear
where Dy g are the diffusion coefficients. This form of the couplings (even in the system mode), and we treat the kinetic
Fokker—Planck equation can be obtained with the help of the limit with a multidimensional FokkerPlanck equation in action
relationA, = (1/2)3;,B,5, which was first derived by Landad. space.
We note that this relation holds only in the random phase Using the current results, it is possible to obtain the rate of
approximation, which assumes a uniform distribution of the escape over the barrier in the double-well métiehd the mean
angles. For real systems this is never the case, and therefordirst passage time for energy accumulation in the two different
the random phase limit is but an approximation. system oscillatord® The derivation of these two important
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quantities is left open for future study. Here instead we focus 4.5

on assessing the validity of the mapping procedure for energy Doublo_Well \lvi\l
accumulation and dissipation. 40 | DoumeTve i
V. Results 35 Lo e

In this section we assess the accuracy of the mapping
procedure. The maps are solved numerically, and the results 30
are compared with the Hamiltonian dynamics for individual

trajectories as well as for an ensemble of trajectories. To g 4.0
perform the calculation we represent the continuous bath by a =
discretized sum of harmonic modes. We follow a procedure £ 35
which is slightly different from the standard offenamely, the £
bath modes are generated from the density ” 30
Harmonic
p(w) = 2y exp(-yw?) (53) 40
wherey = 1.2 x 10°. From now on we employ atomic units. 35k

The linear dependence for small frequencies is consistent with
localized behavior of soft mod€sand has been observed in
Lennard-Jones liquid$:7® 0, 25 50 75 100

To assess the accuracy of the map, we retain only the leading t/T,
term in the systembath coupling, i.e., the sum of bilinear terms. Figure 1. Plots of typical trajectories for the harmonic, Morse, and
The coupling between the system and the bath due to thedouble-well systems. Shown are the changes iq the system a_iction,
quadratic and higher order terms is typically smaller than the }[’ifn?eTrﬁgufgﬁgvemgTs}i ‘;‘g;ﬁ;?;ss's‘;rhee jg’:(t:”l p;riod alt(flefgr”?ﬁg of
coupling due to the biIin_ear te_rm._ _In particular, tho;e _te"_”s harn%onic oscillatorgDp= 0.04 andB = 0.61 for thé l\;l<orse oscillator;
are not expected to contribute significantly to energy dissipation y = 0.03,c = —0.01, and = 1.5 x 102 for the double-well potential:
when the system frequency is well inside the relevant range of the coupling strengtii = 1.1 x 10~ and the reduce mass is =
the spectral density (this is the case for all the systems studied115 570 for all three cases. The solid and dashed lines are the results
below)& Therefore, we focus only on the simpler case of for the mapped and Hamiltonian trajectories, respectively. Note the
bilinear system-bath coupling and leave the assessment of the excelle_nt agreement between the current approach and the Hamiltonian
validity of the map when higher order terms are included for 9Ynamics.
future studyt!

In the present case, the linear coupling coefficients were
calculated according to

phase space volume (the maps were not derived from a

generating function). Our predictecorrector method is thus

equivalent to symplectic integrators used in classical molecular

, Y dynamics simulation&
9 = (Uwlp(wy))ow = u\/;;waéw (54) To compare individual trajectories, we set the initial action

and angle variables of the Hamiltonian dynamics to be equal

wheredw = wmad/Nb, @maxis a cutoff frequency introduced for  to the initial actions and phases of the map, respectively. The

numerical reasons, arlfw) is the spectral density. For allthe latter are chosen from a MaxwelBoltzmann distribution,

results shown in this section we use a cutoff.c= 9 x 1074 excluding the system action which takes a sharp value at the
in atomic units. Within the deformation potential approxima- origin of time. This implies that the angles are selected from
tion,’682the spectral density takes the form a random distribution between 0 and,2and the actions are

generated from exp{Qqlo/ksT)/Q, whereT is the temperature
Y 5 ) (T = 3.17 x 1073 au for all results shown here) a@lis the
Iw) =42y [ ~o” expl-yw’) (55) normalization of the distribution function. This procedure
amounts to a factorization of the initial distribution, that is, in
which is proportional tav? for small frequencies, i.e., a super- the spirit of the perturbation approximation we neglect the
ohmic spectral density4 is the overall systembath coupling coupling between the system and the bath for the initial
strength. We note that when necessary, the higher orderconditions. We note that this approximation is not required and
coupling terms can be obtained by following the procedure is introduced for simplicity.
suggested by Egorov and Bertfe. In Figures 13 we show typical trajectories for the three
It is rather straightforward to generate trajectories using the systems under study. The mapped trajectories are characterized
map. Given the current value of the actions and the phases,by discontinuous jumps in their actions, because we compute
one computes the value of the change and updates the actionthe action at large time intervals. In Figures 1 and 2 we use
and angles. This procedure is repeated until the desired timerelatively large coupling coefficientst (= 1.1 x 1071%), and
is reached. The physical time is increased by one perigd ( to ensure an adequate description of the map, the time step is
from one round to the next. To compute the actual change in set to one vibrational period of the system, ir+~ 1. The
the actions, we use a predictacorrector algorithm, which is  results shown in Figure 3 are for a smaller overall system
essential to ensure numerical stability of the map. In the first bath coupling strength, = 3.5 x 10712 so that the time step
step, we predict the change in the action variables using theis set to 20 vibrational periods of the system, ines5 20. With
current value of the actions. The second step corrects the chang¢hese choices of the time step, the mapped dynamics require
in the action variables given their predicted value. The 20% and 1% the CPU time required for the Hamiltonian
procedure is required since the maps were obtained by first- dynamics (which are much more accurate), respectively, and
order perturbation theory, and therefore they do not preservefor an arbitrary time step we find that the ratio is aboutnl:5
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Figure 2. The same as Figure 1 but for a different set of system
parameters:w = 3.1 x 107 for the harmonic oscillatorD = 0.02

andg = 0.43 for the Morse oscillatok = 0.01,c = —0.003, andd =
4.5 x 107 for the double-well potential.
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Figure 3. The same as Figure 1 but for a different coupling strength,
A = 3.5 x 107*2 This coupling strength induces much smaller energy
exchanges between the system and the bath, and therefore we use
much larger integration step for the map=€ 20).

Since the map is only an approximation to the true dynamics,
a real systematic comparison of CPU time with molecular
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Figure 4. Plots of the second moment of the system action vs reduced
time t/Ts, whereTs is the system period at the origin of time. The lines
and symbols are the results of the maps and Hamiltonian dynamics,
respectively. The results are averaged over 300 trajectoriedlard
1000. The initial system actions are 1.5, 3.5, and 6.5 in increasing slope
order. Similar agreement is found for the first moment too.

parameters to provide significant changes in the action over the
time scale shown in Figures 1 and 2. In many realistic systems,
this time is much longer and requires many iteration of the map.
In such cases, the natural time step) (ised to obtain the map
can be much larger than the vibrational period of the system,
but not so large that the changes in the system action during
one iteration exceed the value of the action. This is exactly
the case shown in Figure 3, in which the time step of the map
is increased to 20 vibrational periods.

We find that the agreement between the map and the
Hamiltonian dynamics is excellent for a large range of initial
conditions and different sets of parameters and couplings. The
map provides better results at lower energies due to the energy
scaling of the systembath coupling. We do, however, find
some trajectories that deviate slightly from the Hamiltonian
dynamics. These are only a small fraction of the total number
of trajectories used to average over initial conditions, and
therefore they have a minor effect on averaged properties.

The results for an ensemble of trajectories are shown in Figure
4. We plot the second moment of the system action= 0GP0
— [ir4, where [0.0Odenote an ensemble average) versus the
feduced time for all three systems. The agreement between the
mapped and Hamiltonian ensembles is excellent for a wide range
of initial energies. We note that a similar agreement is obtained
for the first moment of the system action, which is related to

dynamics is not possible. The reason is that the energythe energy relaxation.

conservation in the map, though very stable, is at a level for

In Figure 5 we compare the analytical results for the second

which ordinary integration schemes, such as the Verlet integra- moment in the system action with results obtained by numeri-
tor, explode. Since a speedup of the CPU time is not the major cally iterating the maps. Itis clear that for the present coupling
goal of the mapping procedure, we do not elaborate on this pointregime the random phase approximation adequately describes

any further.

It is clearly seen in Figures-13 that the map provides a
realistic description of the dynamics for all three systems. The
trajectories are in excellent agreement with the exact Hamilto-

the dynamics of the system, so that the kinetic description given
by the Fokket-Planck equation is valid. The harmonic system
displays a lineai dependence of this second moment, while
both the Morse and double-well systems deviate from linearity

nian dynamics. Note the small changes in the system actionat large values af This behavior can be traced to the fact that

during one iteration, which is a necessary condition for the
mapping procedure to work. We have chosen the coupling

the frequency, is independent of the actiorior the harmonic
system.
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0.20 w v expansion in powers of the small anharmonic terms in the
0.15 | Double-Well i potential. We seek an expression of the energy of the double-
~ ) well in terms of the action variableand for a relation between
% 010 ¢ iy the displacemerg and the actiorrangle variables. The action
0.05 I ] variablei is defined by
0.00 . : [ ‘ . . . .
i= iy‘pdq= J2deg,i, — i|1 - i|2 +..] (A1)
2n 2u 8u2
0.04 | Morse i
= where
002 | ]
. 1.
0.00 1 ; : e I = Equ V(e — 0)(q— e)dq (A2)
| Harmonic J
_ oo 1_1.,.1 A3)
= u & &
0.02 | .
and theg’s are the roots (in ascending ordésy|, [&| < e <
00 Ty e s 1o &) of
iO
Figure 5. Plots of the second moment of the system action vs its initial g(q) = E_ leqZ — 9q3 - q4 =
valueio. The lines are the results of the the analytical formula given d 2 d
by egs 56-52, and the symbols numerical solution of the maps. The q q
numerical results are averaged over 1000 trajectoriesNared 10 000. ee(e, — 9@ —e)(1— é 1- €4 (A4)

The number of vibrational periods in one time step s 20. Note the

nonlinear dependence pi(i) for the Morse and double-well systems. . .
P oK) y The integration of eq A2 can be done by means of the

VI. Concluding Remarks substitution
We have shown that the dynamics of a system coupled to a q= 1(9 —e)siny + l(e +e) (A5)
bath can be captured by a simple map. The map provides a 2 2

realistic approximation to the dynamics, not only for averaged
properties but also for individual trajectories, and it works
equally well for linear and nonlinear systems. The map is not
only is an efficient way to simulate the dynamics of the system ) 1 )
but also provides aimplified description for the different |o=§(el - &)
Hamiltonians, and it highlights the various coupling parameters
that govern the motion of the system. . 1 .
In the random phase approximation, the maps can be reduced 3 =5(& + &ig
to the Fokker-Planck equation. This kinetic description is not
only an alternative way of describing the dynamics of the system .1 2 .
but rather a way of simplifying this description and providing 2= E[S(el +6)" — 4ee)liy
useful insights into the problem. We have derived explicit
analytic expressions for the energy-diffusion coefficients in The roots,g, can be obtained by expanding them in a power
terms of the various parameters (coupling strength, frequency,series ind, or alternatively by adopting a self-consistent
initial energy, etc.). approach, such as the NewteRaphson metho# Since the
The treatment of higher order couplings which is required roots depend on the system eneigywe havei(E) and also
for more realistic systems, the solution of the multidimensional E() by inverting eq Al. This is one of the goals set for this
Fokker-Planck equation, and the application of the mapping APPendix. _ ) _ )
method to calculate rate constants are still open problems for Next we calculate in terms of the actiorangle variables

and leads to an explicit expression for the actipms terms of
the rootse; ande:

(A6)

future study. and6. To the order required, the angle is given by
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) ) ) ) In the above equations(i) = 9E(i)/di is the action-dependent
Appendix A: Approximate Action —Angle Variables for frequency,

the Double-Well Potential
In this Appendix we derive approximate actieangle P Lw(i)(l_i_eﬁrez)%l (A9)
2dee, 4u

variables for the double-well potential in the form of an
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and
N%+%

1,
€= 2de3€4w(l)(1+ Nel_ez

The approximations for and fore in eqs A9 and A10 can be
obtained from an expansion of the roots in a power series in
Finally, we set the origin of the angtg to be on the inner
turning point (which ise; ), so that the angle variable takes the

form

B E‘2) (A10)

du

0~y — esin@y) (A11)
and the displacemertis
1 1
a~5e - e)cos) toete)  (AL2)

We have compared this analytic solution with trajectories
obtained by an exact numerical solution of Hamilton’s equations
of motion for the one-dimensional double-well potential. The
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